Multisensor fusion-based digital twin for localized quality prediction in robotic laser-directed energy deposition
Early detection of defects, such as keyhole pores and cracks is crucial in laser-directed energy deposition (L-DED) additive manufacturing (AM) to prevent build failures. However, the complex melt pool behaviour cannot be adequately captured by conventional single-modal process monitoring approaches...
محفوظ في:
المؤلفون الرئيسيون: | Chen, Lequn, Bi, Guijun, Yao, Xiling, Tan, Chaolin, Su, Jinlong, Ng, Nicholas Poh Huat, Chew, Youxiang, Liu, Kui, Moon, Seung Ki |
---|---|
مؤلفون آخرون: | School of Mechanical and Aerospace Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/172582 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
In-situ defect detection in laser-directed energy deposition with machine learning and multi-sensor fusion
بواسطة: Chen, Lequn, وآخرون
منشور في: (2024) -
Sensor fusion method for horizon detection from an aircraft in low visibility conditions
بواسطة: Liu, C., وآخرون
منشور في: (2016) -
Experimental and theoretical studies on a resolution enhanced sensing system based on multisensor successive approximation
بواسطة: Lee, C.F., وآخرون
منشور في: (2014) -
Data-driven adaptive control for laser-based additive manufacturing with automatic controller tuning
بواسطة: Chen, Lequn, وآخرون
منشور في: (2021) -
Active sensor planning for multiview vision tasks
بواسطة: Chen, S., وآخرون
منشور في: (2017)