Stock picking with machine learning

This study focuses on the integration of both Fundamental and Technical Analysis in stock picking with the machine learning model, Multilayer Perceptron (MLP). We will analyze time-series stock data to identify optimal features for training the MLP model and assess the predictability of the machine...

Full description

Saved in:
Bibliographic Details
Main Author: Ong, Glenna Xianyu
Other Authors: Wang Lipo
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2023
Subjects:
Online Access:https://hdl.handle.net/10356/172691
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This study focuses on the integration of both Fundamental and Technical Analysis in stock picking with the machine learning model, Multilayer Perceptron (MLP). We will analyze time-series stock data to identify optimal features for training the MLP model and assess the predictability of the machine learning model. The historical stock prices and financial metrics from Nasdaq will be used for analysis. The financial metrics used include Market Capitalization, Earnings Per Share (EPS), Price-to-Earnings (PE) ratio, Price-to-book (PB) ratio, Price-to-Sales (PS) ratio, Market Capitalization and Dividend Yield of stocks from Nasdaq. In this paper, we determine whether MLP can accurately forecast market movements with historical financial data and stock market indicators.