Negative-sequence current capability in low-capacitance cascaded H-bridge static compensators with optimal third-harmonic circulating current injection

The cascaded H-bridge (CHB) low-capacitance static compensator (LC-StatCom) has a limited negative-sequence current injection capability compared to a conventional CHB StatCom, due to the comparatively larger oscillations on the capacitor voltages. Placing limits on the ability to provide negative-s...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ramos, Ezequiel Rodriguez, Leyva, Ramon, Farivar, Glen G., Townsend, Christopher D., Pou, Josep
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/172735
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The cascaded H-bridge (CHB) low-capacitance static compensator (LC-StatCom) has a limited negative-sequence current injection capability compared to a conventional CHB StatCom, due to the comparatively larger oscillations on the capacitor voltages. Placing limits on the ability to provide negative-sequence current to the grid for a given capacitor size is required to prevent overmodulation. This article shows that these limits can be maximized by injecting an optimal third-harmonic circulating current. The effects of injecting the third-harmonic current on the capacitor voltages, both in balanced and unbalanced grid voltage conditions, are analyzed. Specifically, the procedure allows the knowledge of the potential capability of the LC-StatCom when injecting negative-sequence currents. The procedure is based on a linear programming approach. Although the procedure is applicable to any CHB StatCom, regardless of the submodule capacitor size, it is particularly important in LC-StatComs. To corroborate the proposed analysis, simulation and experimental results under balanced and unbalanced grid voltage conditions are presented.