Normal approximation of compound Hawkes functionals

We derive quantitative bounds in the Wasserstein distance for the approximation of stochastic integrals with respect to Hawkes processes by a normally distributed random variable. In the case of deterministic and nonnegative integrands, our estimates involve only the third moment of the integrand in...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Khabou, Mahmoud, Privault, Nicolas, Réveillac, Anthony
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/172793
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:We derive quantitative bounds in the Wasserstein distance for the approximation of stochastic integrals with respect to Hawkes processes by a normally distributed random variable. In the case of deterministic and nonnegative integrands, our estimates involve only the third moment of the integrand in addition to a variance term using a squared norm of the integrand. As a consequence, we are able to observe a “third moment phenomenon” in which the vanishing of the first cumulant can lead to faster convergence rates. Our results are also applied to compound Hawkes processes, and improve on the current literature where estimates may not converge to zero in large time or have been obtained only for specific kernels such as the exponential or Erlang kernels.