B-N-bond-embedded triplet terpolymers with small singlet-triplet energy gaps for suppressing non-radiative recombination and improving blend morphology in organic solar cells
Suppressing the photon energy loss (Eloss ), especially the non-radiative loss, is of importance to further improve the device performance of organic solar cells (OSCs). However, typical π-conjugated semiconductors possess a large singlet-triplet energy gap (ΔEST ), leading to a lower triplet state...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/172937 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Suppressing the photon energy loss (Eloss ), especially the non-radiative loss, is of importance to further improve the device performance of organic solar cells (OSCs). However, typical π-conjugated semiconductors possess a large singlet-triplet energy gap (ΔEST ), leading to a lower triplet state than charge transfer state and contributing to a non-radiative loss channel of the photocurrent by the triplet state. Herein, a series of triplet polymer donors are developed by introducing a BNIDT block into the PM6 polymer backbone. The high electron affinity of BNIDT and the opposite resonance effect of the B-N bond in BNIDT results in a lowered highest occupied molecular orbital (HOMO) and a largely reduced ΔEST . Moreover, the morphology of the active blends is also optimized by fine-tuning the BNIDT content. Therefore, non-radiative recombination via the terminal triplet loss channels and morphology traps is effectively suppressed. The PNB-3 (with 3% BNIDT):L8-BO device exhibits both small ΔEST and optimized morphology, favoring more efficient charge transfer and transport. Finally, the simultaneously enhanced Voc of 0.907 V, Jsc of 26.59 mA cm-2 , and FF of 78.86% contribute to a champion PCE of 19.02%. Therefore, introducing B-N bonds into benchmark polymers is a possible avenue toward higher-performance of OSCs. |
---|