Personalized robotic control via constrained multi-objective reinforcement learning

Reinforcement learning is capable of providing state-of-art performance in end-to-end robotic control tasks. Nevertheless, many real-world control tasks necessitate the balancing of multiple conflicting objectives while simultaneously ensuring that the learned policies adhere to constraints. Additio...

全面介紹

Saved in:
書目詳細資料
Main Authors: He, Xiangkun, Hu, Zhongxu, Yang, Haohan, Lv, Chen
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/173290
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!