Developing and scaling of a quantum computing test bed
Superconducting transmon qubits have seen significant progress in the last five years. By optimizing and exploring different fabrication process and superconducting material, transmon lifetime is more than 100 us with single-qubit gate and two-qubit gate fidelity is higher than to 99.8%. This thesis...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Doctor of Philosophy |
Language: | English |
Published: |
Nanyang Technological University
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/173357 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-173357 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1733572024-02-05T15:35:37Z Developing and scaling of a quantum computing test bed Nguyen, Hoang Long Rainer Helmut Dumke School of Physical and Mathematical Sciences RDumke@ntu.edu.sg Science::Physics::Atomic physics::Solid state physics Superconducting transmon qubits have seen significant progress in the last five years. By optimizing and exploring different fabrication process and superconducting material, transmon lifetime is more than 100 us with single-qubit gate and two-qubit gate fidelity is higher than to 99.8%. This thesis reports work to realize a transmon qubit fabrication process and experiment test bed. The experiment stage at the mixing chamber of the dilution fridge is designed and the microwave setup for qubit control and characterization is demonstrated. The qubit fabrication recipe using aluminum and Al/AlOx/Al junction is developed and measured. The qubit lifetime reach an average of 10 us and single-qubit gate fidelity is F = 99.883 +- 0.007%. While the parameters are moderate compared to the state of the art, this system is a good stepping stone to explore qubit scaling and optimization. Doctor of Philosophy 2024-01-30T01:16:30Z 2024-01-30T01:16:30Z 2023 Thesis-Doctor of Philosophy Nguyen, H. L. (2023). Developing and scaling of a quantum computing test bed. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/173357 https://hdl.handle.net/10356/173357 10.32657/10356/173357 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Physics::Atomic physics::Solid state physics |
spellingShingle |
Science::Physics::Atomic physics::Solid state physics Nguyen, Hoang Long Developing and scaling of a quantum computing test bed |
description |
Superconducting transmon qubits have seen significant progress in the last five years. By optimizing and exploring different fabrication process and superconducting material, transmon lifetime is more than 100 us with single-qubit gate and two-qubit gate fidelity is higher than to 99.8%. This thesis reports work to realize a transmon qubit fabrication process and experiment test bed. The experiment stage at the mixing chamber of the dilution fridge is designed and the microwave setup for qubit control and characterization is demonstrated. The qubit fabrication recipe using aluminum and Al/AlOx/Al junction is developed and measured. The qubit lifetime reach an average of 10 us and single-qubit gate fidelity is F = 99.883 +- 0.007%. While the parameters are moderate compared to the state of the art, this system is a good stepping stone to explore qubit scaling and optimization. |
author2 |
Rainer Helmut Dumke |
author_facet |
Rainer Helmut Dumke Nguyen, Hoang Long |
format |
Thesis-Doctor of Philosophy |
author |
Nguyen, Hoang Long |
author_sort |
Nguyen, Hoang Long |
title |
Developing and scaling of a quantum computing test bed |
title_short |
Developing and scaling of a quantum computing test bed |
title_full |
Developing and scaling of a quantum computing test bed |
title_fullStr |
Developing and scaling of a quantum computing test bed |
title_full_unstemmed |
Developing and scaling of a quantum computing test bed |
title_sort |
developing and scaling of a quantum computing test bed |
publisher |
Nanyang Technological University |
publishDate |
2024 |
url |
https://hdl.handle.net/10356/173357 |
_version_ |
1794549282358951936 |