Bailando++: 3D dance GPT with choreographic memory
Our proposed music-to-dance framework, Bailando++, addresses the challenges of driving 3D characters to dance in a way that follows the constraints of choreography norms and maintains temporal coherency with different music genres. Bailando++ consists of two components: a choreographic memory that l...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/173444 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Our proposed music-to-dance framework, Bailando++, addresses the challenges of driving 3D characters to dance in a way that follows the constraints of choreography norms and maintains temporal coherency with different music genres. Bailando++ consists of two components: a choreographic memory that learns to summarize meaningful dancing units from 3D pose sequences, and an actor-critic Generative Pre-trained Transformer (GPT) that composes these units into a fluent dance coherent to the music. In particular, to synchronize the diverse motion tempos and music beats, we introduce an actor-critic-based reinforcement learning scheme to the GPT with a novel beat-align reward function. Additionally, we consider learning human dance poses in the rotation domain to avoid body distortions incompatible with human morphology, and introduce a musical contextual encoding to allow the motion GPT to grasp longer-term patterns of music. Our experiments on the standard benchmark show that Bailando++ achieves state-of-the-art performance both qualitatively and quantitatively, with the added benefit of the unsupervised discovery of human-interpretable dancing-style poses in the choreographic memory. |
---|