Leveraging deep generative models for non-parametric distributions in reinforcement learning

This thesis explores the use of deep generative models to enhance distribution representations in reinforcement learning (RL), leading to improved exploration, stability, and performance. It focuses on two roles of distributions in RL: policy distributions and action distributions. For policy distri...

全面介紹

Saved in:
書目詳細資料
主要作者: Tang, Shi Yuan
其他作者: Zhang Jie
格式: Thesis-Doctor of Philosophy
語言:English
出版: Nanyang Technological University 2024
主題:
在線閱讀:https://hdl.handle.net/10356/173455
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English