Question answering system for chemistry—a semantic agent extension

This paper introduces an extension of a previously developed question answering (QA) system for chemistry, operating on a knowledge graph (KG) called Marie. This extension enables the automatic invocation of semantic agents to answer questions when static data is absent from the KG. The agents are s...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Zhou, Xiaochi, Nurkowski, Daniel, Menon, Angiras, Akroyd, Jethro, Mosbach, Sebastian, Kraft, Markus
مؤلفون آخرون: School of Chemical and Biomedical Engineering
التنسيق: مقال
اللغة:English
منشور في: 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/173757
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:This paper introduces an extension of a previously developed question answering (QA) system for chemistry, operating on a knowledge graph (KG) called Marie. This extension enables the automatic invocation of semantic agents to answer questions when static data is absent from the KG. The agents are semantically described using the agent ontology, OntoAgent, to enable automated agent discovery and invocation. The natural language processing (NLP) models of the QA system need to be trained in order to interpret questions to be answered by new agents. For this purpose, we extend OntoAgent so that it becomes possible to automatically create training material for the NLP models. We evaluate the extended QA system with two example chemistry-related agents and an evaluation question set. The evaluation result shows that the extension allows the QA system to discover the suitable agent and to invoke the agent by automatically constructing requests from the semantic agent description, thereby increasing the range of questions the QA system can answer.