Submonolayer biolasers for ultrasensitive biomarker detection

Biomarker detection is key to identifying health risks. However, designing sensitive and single-use biosensors for early diagnosis remains a major challenge. Here, we report submonolayer lasers on optical fibers as ultrasensitive and disposable biosensors. Telecom optical fibers serve as distributed...

全面介紹

Saved in:
書目詳細資料
Main Authors: Gong, Chaoyang, Yang, Xi, Tang, Shui-Jing, Zhang, Qian-Qian, Wang, Yanqiong, Liu, Yi-Ling, Chen, Yu-Cheng, Peng, Gang-Ding, Fan, Xudong, Xiao, Yun-Feng, Rao, Yun-Jiang, Gong, Yuan
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/173764
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Biomarker detection is key to identifying health risks. However, designing sensitive and single-use biosensors for early diagnosis remains a major challenge. Here, we report submonolayer lasers on optical fibers as ultrasensitive and disposable biosensors. Telecom optical fibers serve as distributed optical microcavities with high Q-factor, great repeatability, and ultralow cost, which enables whispering-gallery laser emission to detect biomarkers. It is found that the sensing performance strongly depends on the number of gain molecules. The submonolayer lasers obtained a six-order-of-magnitude improvement in the lower limit of detection (LOD) when compared to saturated monolayer lasers. We further achieve an ultrasensitive immunoassay for a Parkinson's disease biomarker, alpha-synuclein (α-syn), with a lower LOD of 0.32 pM in serum, which is three orders of magnitude lower than the α-syn concentration in the serum of Parkinson's disease patients. Our demonstration of submonolayer biolaser offers great potentials in high-throughput clinical diagnosis with ultimate sensitivity.