MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites

Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria pa...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Chengqi, Dong, Yibo, Li, Chang, Oberstaller, Jenna, Zhang, Min, Gibbons, Justin, Pires, Camilla Valente, Xiao, Mianli, Zhu, Lei, Jiang, Rays H. Y., Kim, Kami, Miao, Jun, Otto, Thomas D., Cui, Liwang, Adams, John H., Liu, Xiaoming
其他作者: School of Biological Sciences
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/173875
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!