Effect of microplatelet orientation in 3D printed microplatelet reinforced composites with bioinspired microstructures

Complex microstructures are the hallmark of natural ceramic biocomposites, but limited processing methods to reproduce them hinder the understanding of mineral orientation roles on the mechanical properties. This study investigates the influence of microplatelet orientation in composite materials, u...

全面介紹

Saved in:
書目詳細資料
Main Authors: Peng, Weixiang, Chan, Xin Ying, Lee, Seo Heyong, Le Ferrand, Hortense
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/173942
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Complex microstructures are the hallmark of natural ceramic biocomposites, but limited processing methods to reproduce them hinder the understanding of mineral orientation roles on the mechanical properties. This study investigates the influence of microplatelet orientation in composite materials, utilizing the magnetically assisted direct ink writing method (M-DIW) to create microstructured microplatelet-reinforced composites. Experimental and computational approaches are employed to explore the critical role of microplatelet orientation on the flexural properties of these materials. Horizontal microplatelets are found to significantly enhance the composite's flexural toughness by promoting overlap and increasing fracture energy during crack propagation. Vertical microplatelets contribute to increased flexural modulus and strength. Perpendicular microplatelets facilitate straight crack paths and smoother fracture surfaces. Moreover, complex microstructural designs were introduced by strategically combining microplatelet orientations to optimize mechanical properties. These findings emphasize the vital role of microplatelet orientation in composite materials, offering potential for tailored materials with superior performance.