Applications of machine learning methods for photonics and non-Hermitian physics
The recent advances in machine learning and related techniques have arisen their application in different areas. In physics, especially in photonics, Machine learning learns from the dataset and provide an accurate description of mapping between different physical variables. Therefore, they are qui...
Saved in:
主要作者: | Zhu, Changyan |
---|---|
其他作者: | Chong Yidong |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/173955 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Non-Hermitian route to higher-order topology in an acoustic crystal
由: Gao, He, et al.
出版: (2022) -
Valley-Hall photonic crystal waveguides under non-Hermitian active defect
由: Jayaram, Shrinivas, et al.
出版: (2024) -
Non-Hermitian dynamics of slowly varying Hamiltonians
由: Wang, Hailong, et al.
出版: (2018) -
MANY-BODY EFFECTS IN NON-HERMITIAN MATTER
由: SHEN RUIZHE
出版: (2024) -
Versatile braiding of non-hermitian topological edge states
由: Zhu, Bofeng, et al.
出版: (2025)