Online dynamic ensemble deep random vector functional link neural network for forecasting
This paper proposes a three-stage online deep learning model for time series based on the ensemble deep random vector functional link (edRVFL). The edRVFL stacks multiple randomized layers to enhance the single-layer RVFL's representation ability. Each hidden layer's representation is util...
Saved in:
Main Authors: | Gao, Ruobin, Li, Ruilin, Hu, Minghui, Suganthan, P. N., Yuen, Kum Fai |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/174180 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
An enhanced ensemble deep random vector functional link network for driver fatigue recognition
由: Li, Ruilin, et al.
出版: (2024) -
A spectral-ensemble deep random vector functional link network for passive brain–computer interface
由: Li, Ruilin, et al.
出版: (2024) -
Random vector functional link neural network based ensemble deep learning
由: Shi, Qiushi, et al.
出版: (2022) -
Ship order book forecasting by an ensemble deep parsimonious random vector functional link network
由: Cheng, Ruke, et al.
出版: (2024) -
Random vector functional link neural network based ensemble deep learning for short-term load forecasting
由: Gao, Ruobin, et al.
出版: (2023)