Self-distillation for randomized neural networks
Knowledge distillation (KD) is a conventional method in the field of deep learning that enables the transfer of dark knowledge from a teacher model to a student model, consequently improving the performance of the student model. In randomized neural networks, due to the simple topology of network ar...
Saved in:
Main Authors: | Hu, Minghui, Gao, Ruobin, Suganthan, Ponnuthurai Nagaratnam |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/174318 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Online dynamic ensemble deep random vector functional link neural network for forecasting
由: Gao, Ruobin, et al.
出版: (2024) -
Representation learning using deep random vector functional link networks for clustering
由: Hu, Minghui, et al.
出版: (2022) -
An enhanced ensemble deep random vector functional link network for driver fatigue recognition
由: Li, Ruilin, et al.
出版: (2024) -
A spectral-ensemble deep random vector functional link network for passive brain–computer interface
由: Li, Ruilin, et al.
出版: (2024) -
Stacked autoencoder based deep random vector functional link neural network for classification
由: Katuwal, Rakesh, et al.
出版: (2020)