Fully decoupled neural network learning using delayed gradients
Training neural networks with back-propagation (BP) requires a sequential passing of activations and gradients. This has been recognized as the lockings (i.e., the forward, backward, and update lockings) among modules (each module contains a stack of layers) inherited from the BP. In this paper,...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/174476 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|