Optimizing 3D printing parameters for enhanced microhardness in Ti64 alloys
The advent of additive manufacturing, particularly 3D printing, has revolutionized the fabrication of complex structures from titanium alloy (Ti64), offering promising applications in aerospace, automotive, and biomedical sectors. This study investigates the effects of varying 3D printing parameters...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/174640 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The advent of additive manufacturing, particularly 3D printing, has revolutionized the fabrication of complex structures from titanium alloy (Ti64), offering promising applications in aerospace, automotive, and biomedical sectors. This study investigates the effects of varying 3D printing parameters—power, hatch spacing, and scanning speed—on the microhardness and yield modulus of Ti64 components. Utilizing two different Ti64 powder sources, namely Carpenter (Commercial powder) and Vestfort, a total of 50 samples (25 from each powder type) were produced under different printing conditions. The experimental design aimed to explore the relationship between the chosen printing parameters and the resulting material properties, thereby enabling the optimization of additive manufacturing processes for Ti64. |
---|