Classification of semiregular relative difference sets with gcd(λ, n)=1 attaining Turyn’s bound

Suppose a (λn,n,λn,λ) relative difference set exists in an abelian group G=S×H, where |S|=λ, |H|=n2, gcd(λ,n)=1, and λ is self-conjugate modulo λn. Then λ is a square, say λ=u2, and exp(S) divides u by Turyn’s exponent bound. We classify all such relative difference sets with exp(S)=u. We also show...

全面介紹

Saved in:
書目詳細資料
Main Authors: Leung, Ka Hin, Schmidt, Bernhard, Zhang, Tao
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/174655
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English