Classification of semiregular relative difference sets with gcd(λ, n)=1 attaining Turyn’s bound
Suppose a (λn,n,λn,λ) relative difference set exists in an abelian group G=S×H, where |S|=λ, |H|=n2, gcd(λ,n)=1, and λ is self-conjugate modulo λn. Then λ is a square, say λ=u2, and exp(S) divides u by Turyn’s exponent bound. We classify all such relative difference sets with exp(S)=u. We also show...
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/174655 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
成為第一個發表評論!