Tail mean-variance portfolio selection with estimation risk

Tail Mean-Variance (TMV) has emerged from the actuarial community as a criterion for risk management and portfolio selection, with a focus on extreme losses. The existing literature on portfolio optimization under the TMV criterion relies on the plug-in approach that substitutes the unknown mean vec...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Huang, Zhenzhen, Wei, P.engyu, Weng, Chengguo
مؤلفون آخرون: Nanyang Business School
التنسيق: مقال
اللغة:English
منشور في: 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/174709
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Tail Mean-Variance (TMV) has emerged from the actuarial community as a criterion for risk management and portfolio selection, with a focus on extreme losses. The existing literature on portfolio optimization under the TMV criterion relies on the plug-in approach that substitutes the unknown mean vector and covariance matrix of asset returns in the optimal portfolio weights with their sample counterparts. However, the plug-in method inevitably introduces estimation risk and usually leads to poor out-of-sample portfolio performance. To address this issue, we propose a combination of the plug-in and 1/N rules and optimize its expected out-of-sample performance. Our study is based on the Mean-Variance-Standard-deviation (MVS) performance measure, which encompasses the TMV, classical Mean-Variance, and Mean-Standard-Deviation (MStD) as special cases. The MStD criterion is particularly relevant to mean-risk portfolio selection when risk is measured by quantile-based risk measures. Our proposed combined portfolio consistently outperforms both the plug-in MVS and 1/N portfolios in simulated and real-world datasets.