Tail mean-variance portfolio selection with estimation risk
Tail Mean-Variance (TMV) has emerged from the actuarial community as a criterion for risk management and portfolio selection, with a focus on extreme losses. The existing literature on portfolio optimization under the TMV criterion relies on the plug-in approach that substitutes the unknown mean vec...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/174709 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Tail Mean-Variance (TMV) has emerged from the actuarial community as a criterion for risk management and portfolio selection, with a focus on extreme losses. The existing literature on portfolio optimization under the TMV criterion relies on the plug-in approach that substitutes the unknown mean vector and covariance matrix of asset returns in the optimal portfolio weights with their sample counterparts. However, the plug-in method inevitably introduces estimation risk and usually leads to poor out-of-sample portfolio performance. To address this issue, we propose a combination of the plug-in and 1/N rules and optimize its expected out-of-sample performance. Our study is based on the Mean-Variance-Standard-deviation (MVS) performance measure, which encompasses the TMV, classical Mean-Variance, and Mean-Standard-Deviation (MStD) as special cases. The MStD criterion is particularly relevant to mean-risk portfolio selection when risk is measured by quantile-based risk measures. Our proposed combined portfolio consistently outperforms both the plug-in MVS and 1/N portfolios in simulated and real-world datasets. |
---|