Roadmap on electromagnetic metamaterials and metasurfaces
The flourishing area of electromagnetic (EM) metamaterials and metasurfaces has attracted significant interests for several decades. Early work can be traced back to 1968 when Victor G. Veselago firstly presented the theory of negative refraction with negative permittivity and negative permeabilit...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/174899 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-174899 |
---|---|
record_format |
dspace |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Physics Electromagnetic metamaterials Metasurfaces |
spellingShingle |
Physics Electromagnetic metamaterials Metasurfaces Cui, Tie Jun Zhang, Shuang Alu, Andrea Wegener, Martin Pendry, John Luo, Jie Lai, Yun Wang, Zuojia Lin, Xiao Chen, Hongsheng Chen, Ping Wu, Rui-Xin Yin, Yuhang Zhao, Pengfei Chen, Huanyang Li, Yue Zhou, Ziheng Engheta, Nader Asadchy, V. S. Simovski, Constantin Tretyakov, Sergei A. Yang, Biao Campbell, Sawyer D. Hao, Yang Werner, Douglas H. Sun, Shulin Zhou, Lei Xu, Su Sun, Hong-Bo Zhou, Zhou Li, Zile Zheng, Guoxing Chen, Xianzhong Li, Tao Zhu, Shi-Ning Zhou, Junxiao Zhao, Junxiang Liu, Zhaowei Zhang, Yuchao Zhang, Qiming Gu, Min Xiao, Shumin Liu, Yongmin Zhang, Xiaoyu Tang, Yutao Li, Guixin Zentgraf, Thomas Koshelev, Kirill Kivshar, Yuri S. Li, Xin Badloe, Trevon Huang, Lingling Rho, Junsuk Wang, Shuming Tsai, Din Ping Bykov, A. Yu. Krasavin, Alexey V. Zayats, Anatoly V. McDonnell, Cormac Ellenbogen, Tal Luo, Xiangang Pu, Mingbo Garcia-Vidal, Francisco J. Liu, Liangliang Li, Zhuo Tang, Wenxuan Ma, Hui Feng Zhang, Jingjing Luo, Yu Zhang, Xuanru Zhang, Hao Chi He, Pei Hang Zhang, Le Peng Wan, Xiang Wu, Haotian Liu, Shuo Jiang, Wei Xiang Zhang, Xin Ge Qiu, Chengwei Ma, Qian Liu, Che Li, Long Han, Jiaqi Li, Lianlin Cotrufo, Michele Caloz, Christophe Deck-Léger, Z.-L. Bahrami, A. Céspedes, O. Galiffi, Emanuele Huidobro, P. A. Cheng, Qiang Dai, Jun Yan Ke, Jun Cheng Zhang, Lei Galdi, Vincenzo Di Renzo, Marco Roadmap on electromagnetic metamaterials and metasurfaces |
description |
The flourishing area of electromagnetic (EM) metamaterials and metasurfaces has attracted significant
interests for several decades. Early work can be traced back to 1968 when Victor G. Veselago firstly
presented the theory of negative refraction with negative permittivity and negative permeability [1].
Then in late 1990s, Sir John B. Pendry proposed a methodology to realize the negative permittivity [2]
and negative permeability [3] using periodically-arranged metallic wires and split-ring resonators in
subwavelength scale, establishing the fundamental theory and experimental research of metamaterials
[4, 5]. In the early-stage researches, the effective medium theories play an important role in describing
the macroscopic properties of three-dimensional EM metamaterials, and diversely novel physical
phenomena have been demonstrated, including the negative refraction, perfect lens and superlens,
and invisibility cloaking. Therefore, the metamaterials characterized by effective medium theories are
also called as effective medium metamaterials. Although there is a long history of the effective medium
metamaterials, there are still ongoing scientific breakthroughs and emerging engineering applications
nowadays. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Cui, Tie Jun Zhang, Shuang Alu, Andrea Wegener, Martin Pendry, John Luo, Jie Lai, Yun Wang, Zuojia Lin, Xiao Chen, Hongsheng Chen, Ping Wu, Rui-Xin Yin, Yuhang Zhao, Pengfei Chen, Huanyang Li, Yue Zhou, Ziheng Engheta, Nader Asadchy, V. S. Simovski, Constantin Tretyakov, Sergei A. Yang, Biao Campbell, Sawyer D. Hao, Yang Werner, Douglas H. Sun, Shulin Zhou, Lei Xu, Su Sun, Hong-Bo Zhou, Zhou Li, Zile Zheng, Guoxing Chen, Xianzhong Li, Tao Zhu, Shi-Ning Zhou, Junxiao Zhao, Junxiang Liu, Zhaowei Zhang, Yuchao Zhang, Qiming Gu, Min Xiao, Shumin Liu, Yongmin Zhang, Xiaoyu Tang, Yutao Li, Guixin Zentgraf, Thomas Koshelev, Kirill Kivshar, Yuri S. Li, Xin Badloe, Trevon Huang, Lingling Rho, Junsuk Wang, Shuming Tsai, Din Ping Bykov, A. Yu. Krasavin, Alexey V. Zayats, Anatoly V. McDonnell, Cormac Ellenbogen, Tal Luo, Xiangang Pu, Mingbo Garcia-Vidal, Francisco J. Liu, Liangliang Li, Zhuo Tang, Wenxuan Ma, Hui Feng Zhang, Jingjing Luo, Yu Zhang, Xuanru Zhang, Hao Chi He, Pei Hang Zhang, Le Peng Wan, Xiang Wu, Haotian Liu, Shuo Jiang, Wei Xiang Zhang, Xin Ge Qiu, Chengwei Ma, Qian Liu, Che Li, Long Han, Jiaqi Li, Lianlin Cotrufo, Michele Caloz, Christophe Deck-Léger, Z.-L. Bahrami, A. Céspedes, O. Galiffi, Emanuele Huidobro, P. A. Cheng, Qiang Dai, Jun Yan Ke, Jun Cheng Zhang, Lei Galdi, Vincenzo Di Renzo, Marco |
format |
Article |
author |
Cui, Tie Jun Zhang, Shuang Alu, Andrea Wegener, Martin Pendry, John Luo, Jie Lai, Yun Wang, Zuojia Lin, Xiao Chen, Hongsheng Chen, Ping Wu, Rui-Xin Yin, Yuhang Zhao, Pengfei Chen, Huanyang Li, Yue Zhou, Ziheng Engheta, Nader Asadchy, V. S. Simovski, Constantin Tretyakov, Sergei A. Yang, Biao Campbell, Sawyer D. Hao, Yang Werner, Douglas H. Sun, Shulin Zhou, Lei Xu, Su Sun, Hong-Bo Zhou, Zhou Li, Zile Zheng, Guoxing Chen, Xianzhong Li, Tao Zhu, Shi-Ning Zhou, Junxiao Zhao, Junxiang Liu, Zhaowei Zhang, Yuchao Zhang, Qiming Gu, Min Xiao, Shumin Liu, Yongmin Zhang, Xiaoyu Tang, Yutao Li, Guixin Zentgraf, Thomas Koshelev, Kirill Kivshar, Yuri S. Li, Xin Badloe, Trevon Huang, Lingling Rho, Junsuk Wang, Shuming Tsai, Din Ping Bykov, A. Yu. Krasavin, Alexey V. Zayats, Anatoly V. McDonnell, Cormac Ellenbogen, Tal Luo, Xiangang Pu, Mingbo Garcia-Vidal, Francisco J. Liu, Liangliang Li, Zhuo Tang, Wenxuan Ma, Hui Feng Zhang, Jingjing Luo, Yu Zhang, Xuanru Zhang, Hao Chi He, Pei Hang Zhang, Le Peng Wan, Xiang Wu, Haotian Liu, Shuo Jiang, Wei Xiang Zhang, Xin Ge Qiu, Chengwei Ma, Qian Liu, Che Li, Long Han, Jiaqi Li, Lianlin Cotrufo, Michele Caloz, Christophe Deck-Léger, Z.-L. Bahrami, A. Céspedes, O. Galiffi, Emanuele Huidobro, P. A. Cheng, Qiang Dai, Jun Yan Ke, Jun Cheng Zhang, Lei Galdi, Vincenzo Di Renzo, Marco |
author_sort |
Cui, Tie Jun |
title |
Roadmap on electromagnetic metamaterials and metasurfaces |
title_short |
Roadmap on electromagnetic metamaterials and metasurfaces |
title_full |
Roadmap on electromagnetic metamaterials and metasurfaces |
title_fullStr |
Roadmap on electromagnetic metamaterials and metasurfaces |
title_full_unstemmed |
Roadmap on electromagnetic metamaterials and metasurfaces |
title_sort |
roadmap on electromagnetic metamaterials and metasurfaces |
publishDate |
2024 |
url |
https://hdl.handle.net/10356/174899 |
_version_ |
1800916317732077568 |
spelling |
sg-ntu-dr.10356-1748992024-04-22T15:36:44Z Roadmap on electromagnetic metamaterials and metasurfaces Cui, Tie Jun Zhang, Shuang Alu, Andrea Wegener, Martin Pendry, John Luo, Jie Lai, Yun Wang, Zuojia Lin, Xiao Chen, Hongsheng Chen, Ping Wu, Rui-Xin Yin, Yuhang Zhao, Pengfei Chen, Huanyang Li, Yue Zhou, Ziheng Engheta, Nader Asadchy, V. S. Simovski, Constantin Tretyakov, Sergei A. Yang, Biao Campbell, Sawyer D. Hao, Yang Werner, Douglas H. Sun, Shulin Zhou, Lei Xu, Su Sun, Hong-Bo Zhou, Zhou Li, Zile Zheng, Guoxing Chen, Xianzhong Li, Tao Zhu, Shi-Ning Zhou, Junxiao Zhao, Junxiang Liu, Zhaowei Zhang, Yuchao Zhang, Qiming Gu, Min Xiao, Shumin Liu, Yongmin Zhang, Xiaoyu Tang, Yutao Li, Guixin Zentgraf, Thomas Koshelev, Kirill Kivshar, Yuri S. Li, Xin Badloe, Trevon Huang, Lingling Rho, Junsuk Wang, Shuming Tsai, Din Ping Bykov, A. Yu. Krasavin, Alexey V. Zayats, Anatoly V. McDonnell, Cormac Ellenbogen, Tal Luo, Xiangang Pu, Mingbo Garcia-Vidal, Francisco J. Liu, Liangliang Li, Zhuo Tang, Wenxuan Ma, Hui Feng Zhang, Jingjing Luo, Yu Zhang, Xuanru Zhang, Hao Chi He, Pei Hang Zhang, Le Peng Wan, Xiang Wu, Haotian Liu, Shuo Jiang, Wei Xiang Zhang, Xin Ge Qiu, Chengwei Ma, Qian Liu, Che Li, Long Han, Jiaqi Li, Lianlin Cotrufo, Michele Caloz, Christophe Deck-Léger, Z.-L. Bahrami, A. Céspedes, O. Galiffi, Emanuele Huidobro, P. A. Cheng, Qiang Dai, Jun Yan Ke, Jun Cheng Zhang, Lei Galdi, Vincenzo Di Renzo, Marco School of Physical and Mathematical Sciences Physics Electromagnetic metamaterials Metasurfaces The flourishing area of electromagnetic (EM) metamaterials and metasurfaces has attracted significant interests for several decades. Early work can be traced back to 1968 when Victor G. Veselago firstly presented the theory of negative refraction with negative permittivity and negative permeability [1]. Then in late 1990s, Sir John B. Pendry proposed a methodology to realize the negative permittivity [2] and negative permeability [3] using periodically-arranged metallic wires and split-ring resonators in subwavelength scale, establishing the fundamental theory and experimental research of metamaterials [4, 5]. In the early-stage researches, the effective medium theories play an important role in describing the macroscopic properties of three-dimensional EM metamaterials, and diversely novel physical phenomena have been demonstrated, including the negative refraction, perfect lens and superlens, and invisibility cloaking. Therefore, the metamaterials characterized by effective medium theories are also called as effective medium metamaterials. Although there is a long history of the effective medium metamaterials, there are still ongoing scientific breakthroughs and emerging engineering applications nowadays. Agency for Science, Technology and Research (A*STAR) Ministry of Education (MOE) National Research Foundation (NRF) Submitted/Accepted version TJC acknowledges the supports from the Basic Scientific Center of Information Metamaterials of the National Natural Science Foundation of China (62288101), the National Key Research and Development Program of China (2017YFA0700201, 2017YFA0700202, and 2017YFA0700203), the Major Project of Natural Science Foundation of Jiangsu Province (BK20212002), and the National Natural Science Foundation of China for Basic Science Center of Information Metamaterials. This work was sponsored by Shanghai Pujiang Program (No. 21PJ1411200), National Natural Science Foundation of China (No. 61975123), Zhangjiang National Innovation Demonstration Zone (No. ZJ2019- ZD-005), Shanghai Frontiers Science Center Program 2021-2025 (No. 20), and Pilot Project from Shanghai Commission for Science and Technology (No. 21DZ1100500). G. L. would like to acknowledge the financial supports from the National Natural Science Foundation of China (91950114). This work is supported by the National Natural Science Foundation of China (No. 61771238, 61871215, 61701246); the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics); the Fund of Qing Lan Project of Jiangsu Province. This work is supported by the National Natural Science Foundation of China (61971134, 61631007, 62071117, 61831006), the Fundamental Research Funds for the Central Universities (2242021R41078), and the 111 Project (111-2-05). This work was supported by the National Natural Science Foundation of China (62288101), National Key Research and Development Program of China (2017YFA0700201, 2017YFA0700202, and 2017YFA0700203), and Major Project of Natural Science Foundation of Jiangsu Province (BK20212002). This work was supported in part from the National Key Research and Development Program of China under Grant Nos. 2017YFA0700201, 2017YFA0700202, and 2017YFA0700203, the National Natural Science Foundation of China under Grant Nos. 61871127, 61735010, 61731010, 61890544, 61801117, 61722106, 61701107, 61701108, 61701246, and 61631007, the State Key Laboratory of Millimeter Waves, Southeast University, China (K201924), the Fundamental Research Funds for the Central Universities under Grant No. 2242018R30001, the 111 Project under Grant No. 111-2-05, and the Fund for International Cooperation and Exchange of the National Natural Science Foundation of China under Grant No. 61761136007. This work is supported by the National Key Research and Development Program of China (2018YFA0701904, 2017YFA0700201, 2017YFA0700202, and 2017YFA0700203), the National Natural Science Foundation of China (61731010 and 62288101). 2024-04-17T07:28:11Z 2024-04-17T07:28:11Z 2024 Journal Article Cui, T. J., Zhang, S., Alu, A., Wegener, M., Pendry, J., Luo, J., Lai, Y., Wang, Z., Lin, X., Chen, H., Chen, P., Wu, R., Yin, Y., Zhao, P., Chen, H., Li, Y., Zhou, Z., Engheta, N., Asadchy, V. S., ...Di Renzo, M. (2024). Roadmap on electromagnetic metamaterials and metasurfaces. JPhys Photonics. https://dx.doi.org/10.1088/2515-7647/ad1a3b 2515-7647 https://hdl.handle.net/10356/174899 10.1088/2515-7647/ad1a3b en NRF-2022M3C1A3081312 NRF220 CRP22-2019-0006 MOE2018-T2-2-189(S) NRF-CRP23-2019-0007 A20E5c0095 A18A7b0058 JPhys Photonics © 2024 The Author(s). Published by IOP Publishing. This is an open-access article distributed under the terms of the Creative Commons License. application/pdf |