High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation
Cobalt oxyhydroxide (CoOOH) is a promising catalytic material for oxygen evolution reaction (OER). In the traditional CoOOH structure, Co3+ exhibits a low-spin state configuration ([Formula: see text]), with electron transfer occurring in face-to-face [Formula: see text] orbitals. In this work, we r...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/174906 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Cobalt oxyhydroxide (CoOOH) is a promising catalytic material for oxygen evolution reaction (OER). In the traditional CoOOH structure, Co3+ exhibits a low-spin state configuration ([Formula: see text]), with electron transfer occurring in face-to-face [Formula: see text] orbitals. In this work, we report the successful synthesis of high-spin state Co3+ CoOOH structure, by introducing coordinatively unsaturated Co atoms. As compared to the low-spin state CoOOH, electron transfer in the high-spin state CoOOH occurs in apex-to-apex [Formula: see text] orbitals, which exhibits faster electron transfer ability. As a result, the high-spin state CoOOH performs superior OER activity with an overpotential of 226 mV at 10 mA cm-2, which is 148 mV lower than that of the low-spin state CoOOH. This work emphasizes the effect of the spin state of Co3+ on OER activity of CoOOH based electrocatalysts for water splitting, and thus provides a new strategy for designing highly efficient electrocatalysts. |
---|