Improved spectral bound for quasi-cyclic codes

Spectral bounds form a powerful tool to estimate the minimum distances of quasi-cyclic codes. They generalize the defining set bounds of cyclic codes to those of quasi-cyclic codes. Based on the eigenvalues of quasi-cyclic codes and the corresponding eigenspaces, we provide an improved spectral boun...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Luo, Gaojun, Ezerman, Martianus Frederic, Ling, San, Özkaya, Buket
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/174996
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Spectral bounds form a powerful tool to estimate the minimum distances of quasi-cyclic codes. They generalize the defining set bounds of cyclic codes to those of quasi-cyclic codes. Based on the eigenvalues of quasi-cyclic codes and the corresponding eigenspaces, we provide an improved spectral bound for quasi-cyclic codes. Numerical results verify that the improved bound outperforms the Jensen bound in almost all cases. Based on the improved bound, we propose a general construction of quasi-cyclic codes with excellent designed minimum distances. For the quasi-cyclic codes produced by this general construction, the improved spectral bound is always sharper than the Jensen bound.