Image quality assessment for visual object segmentation

An image segmentation model is deemed successful if reflects how a human would segment an image into foreground and background (i.e. be as close to the ground truth (GT) as possible). To train a successful model, the evaluation of binary foreground maps (FM) plays an important role. Recent evaluatio...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Ng, Darryl Jingheng
مؤلفون آخرون: Lin Weisi
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/175092
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:An image segmentation model is deemed successful if reflects how a human would segment an image into foreground and background (i.e. be as close to the ground truth (GT) as possible). To train a successful model, the evaluation of binary foreground maps (FM) plays an important role. Recent evaluation methods like E-measure fail to consider the semantic meanings of images for binary FM evaluation. In this paper, I investigate the feasibility to perform binary FM evaluation using an attention map (Attention Measure), as well as its effectiveness when integrated into E-measure, to make up for E-measure’s lack of semantic consideration in the form of a new measure, Aligned Attention Measure. Attention Measure showed promising results by itself, while Aligned Attention Measure achieved improvements to E-measure and managed to reflect a better human visual system (HVS) correlation in terms of ranking binary FMs. Future work will explore the fine-tuning of this metric to minimise variability as well as improve its parity with HVS.