Forecasting patient vital signs in irregular time-series with neural networks using Markov Chain principles

Analyzing patient health through irregular time series vital sign data demands inno vative methods beyond conventional imputation techniques. This study introduces a novel approach diverging from prevailing attention-based models to explicitly capture temporal patient evolution. We adopt a paradig...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Choy, Xin Yun
مؤلفون آخرون: Fan Xiuyi
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/175142
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Analyzing patient health through irregular time series vital sign data demands inno vative methods beyond conventional imputation techniques. This study introduces a novel approach diverging from prevailing attention-based models to explicitly capture temporal patient evolution. We adopt a paradigm where patients are viewed as dy namic systems evolving over time, with their vital signs encapsulating the system’s states. Our conceptual framework draws parallels to a Markov chain, exploring the transitions between states within a unit of time. To navigate the challenge of a vast state space, we employ a neural network to model expected transitions. Our method portrays the patient’s progression within one unit of time as the system evolves from one state to another, and forecasts states into the future. We outline the training process using irregular time series data and demonstrate its efficacy through analysis on two large vital sign data sets. Comparative analysis against attention-based models emphasizes the effectiveness and efficiency of our approach. This research heralds a promising avenue for patient vital sign analysis, providing insights into temporal patient evolution without relying on imputation methods, thereby enhancing predictive accuracy and interpretability of models.