Applying graph neural network to multivariate time series anomaly detection
The proliferation of data collection methods and technologies has underscored the importance and potential of data across various domains. Time series data, characterized by high dimensions and large volumes, serves as a valuable source for pattern discovery and information extraction in diverse fie...
Saved in:
主要作者: | Mao, Yiyun |
---|---|
其他作者: | Jagath C Rajapakse |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/175247 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Time series anomaly detection
由: Lek, Jie Kai
出版: (2024) -
Anomaly detection in multivariate time series using ensemble method
由: Liu, Yanling
出版: (2022) -
Graph neural network for anomaly detection
由: Yeo, Ming Hong
出版: (2024) -
HRGCN: Heterogeneous graph-level anomaly detection with hierarchical relation-augmented graph neural networks
由: LI, Jiaxi, et al.
出版: (2023) -
MULTIVARIATE TIME SERIES FORECASTING ON FINANCIAL DOMAIN USING SPECTRAL TEMPORAL GRAPH NEURAL NETWORK
由: Orizadi, Haris