Animal hunt: bioacoustics animal recognition application

This project aims to create a bioacoustics classification model that can be used for real- time identification of animals based on their sounds in mobile applications. The first part of the project will focus on developing a bioacoustics classification model for the backend of the application. Th...

Full description

Saved in:
Bibliographic Details
Main Author: Low, Ren Hwa
Other Authors: Owen Noel Newton Fernando
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2024
Subjects:
Online Access:https://hdl.handle.net/10356/175290
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-175290
record_format dspace
spelling sg-ntu-dr.10356-1752902024-04-26T15:44:40Z Animal hunt: bioacoustics animal recognition application Low, Ren Hwa Owen Noel Newton Fernando School of Computer Science and Engineering OFernando@ntu.edu.sg Computer and Information Science Bioacoustics Few-shot learning Source seperation Transfer learning Data augmentation Edge inference This project aims to create a bioacoustics classification model that can be used for real- time identification of animals based on their sounds in mobile applications. The first part of the project will focus on developing a bioacoustics classification model for the backend of the application. The second part of the project will emphasize on the deployment of the model and optimizing its inference performance for edge devices. To build effective bioacoustics classification models, a substantial amount of labelled data is often required. The primary challenge for many bioacoustics tasks lies in the scarcity of training data, especially for rare and endangered species. Furthermore, challenges arise not only from a scarcity of data, but also from concerns regarding data quality. Many datasets exhibit weak labelling and are often plagued by background noise and overlapping vocalizations from different species. To address the data limitations, this study reframes the bioacoustics classification task as a few-shot learning problem, primarily relying on transfer learning through pre-trained global bird embedding models such as BirdNET and Perch, known for their exceptional generalization capabilities to other non-bird taxa. The performance of their embeddings was evaluated on three diverse datasets specific to Singapore. We also propose a pipeline to derive an annotated dataset for supervised learning through the use of MixIT, a sound separation model designed to isolate background noise and overlapping vocalizations, and RIBBIT, a bioacoustics tool. RIBBIT can not only identify the output channel containing the isolated target vocalizations but also generate strongly labeled data by providing temporal information about the audio events within each recording. Our findings demonstrate the superior performance of these large-scale acoustic bird classifier models in comparison to general audio event detection models for bioacoustics classification tasks, which can be further improved by applying separation to classifier training data, addressing the issue of limited high quality training data. Bachelor's degree 2024-04-23T06:31:52Z 2024-04-23T06:31:52Z 2024 Final Year Project (FYP) Low, R. H. (2024). Animal hunt: bioacoustics animal recognition application. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/175290 https://hdl.handle.net/10356/175290 en application/pdf image/jpeg Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Computer and Information Science
Bioacoustics
Few-shot learning
Source seperation
Transfer learning
Data augmentation
Edge inference
spellingShingle Computer and Information Science
Bioacoustics
Few-shot learning
Source seperation
Transfer learning
Data augmentation
Edge inference
Low, Ren Hwa
Animal hunt: bioacoustics animal recognition application
description This project aims to create a bioacoustics classification model that can be used for real- time identification of animals based on their sounds in mobile applications. The first part of the project will focus on developing a bioacoustics classification model for the backend of the application. The second part of the project will emphasize on the deployment of the model and optimizing its inference performance for edge devices. To build effective bioacoustics classification models, a substantial amount of labelled data is often required. The primary challenge for many bioacoustics tasks lies in the scarcity of training data, especially for rare and endangered species. Furthermore, challenges arise not only from a scarcity of data, but also from concerns regarding data quality. Many datasets exhibit weak labelling and are often plagued by background noise and overlapping vocalizations from different species. To address the data limitations, this study reframes the bioacoustics classification task as a few-shot learning problem, primarily relying on transfer learning through pre-trained global bird embedding models such as BirdNET and Perch, known for their exceptional generalization capabilities to other non-bird taxa. The performance of their embeddings was evaluated on three diverse datasets specific to Singapore. We also propose a pipeline to derive an annotated dataset for supervised learning through the use of MixIT, a sound separation model designed to isolate background noise and overlapping vocalizations, and RIBBIT, a bioacoustics tool. RIBBIT can not only identify the output channel containing the isolated target vocalizations but also generate strongly labeled data by providing temporal information about the audio events within each recording. Our findings demonstrate the superior performance of these large-scale acoustic bird classifier models in comparison to general audio event detection models for bioacoustics classification tasks, which can be further improved by applying separation to classifier training data, addressing the issue of limited high quality training data.
author2 Owen Noel Newton Fernando
author_facet Owen Noel Newton Fernando
Low, Ren Hwa
format Final Year Project
author Low, Ren Hwa
author_sort Low, Ren Hwa
title Animal hunt: bioacoustics animal recognition application
title_short Animal hunt: bioacoustics animal recognition application
title_full Animal hunt: bioacoustics animal recognition application
title_fullStr Animal hunt: bioacoustics animal recognition application
title_full_unstemmed Animal hunt: bioacoustics animal recognition application
title_sort animal hunt: bioacoustics animal recognition application
publisher Nanyang Technological University
publishDate 2024
url https://hdl.handle.net/10356/175290
_version_ 1800916183792222208