Data augmentation and mixup techniques for stock returns prediction

In financial forecasting, the caliber of data underpinning models is critical for precision in predicting market trends. This research investigates the efficacy of data aug- mentation, a technique widely used in domains such as image processing, applied to financial time series. We assess how method...

全面介紹

Saved in:
書目詳細資料
主要作者: Tan, Regan Yik Rong
其他作者: Bo An
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2024
主題:
在線閱讀:https://hdl.handle.net/10356/175462
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In financial forecasting, the caliber of data underpinning models is critical for precision in predicting market trends. This research investigates the efficacy of data aug- mentation, a technique widely used in domains such as image processing, applied to financial time series. We assess how methods like Cut Mix, Linear Mix, and Amplitude Mix—augmented with filters such as Savgol, Kalman, and LOWESS—can refine predictive models. The hypothesis posits that these augmentations can uphold data integrity while infusing beneficial variability to enhance model robustness and forecasting accuracy. Results confirm that Linear Mix and Amplitude Mix improve classification performance by introducing manageable variability without sacrificing the data’s core structure. In contrast, Cut Mix often decreases accuracy, underscoring the potential drawbacks of excessive data modification. The findings suggest a strategic equilibrium in data augmentation is paramount for advancing the adaptability and accuracy of financial forecasting tools.