Deep learning supported location-aware keyword query

In this project report, I explore the integration of deep learning techniques with location-aware keyword queries for improved information retrieval in geospatial contexts. It addresses the challenge of efficiently managing high-dimensional geo-textual data and processing queries over large datasets...

全面介紹

Saved in:
書目詳細資料
主要作者: Xia, Tianyi
其他作者: Gao Cong
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2024
主題:
在線閱讀:https://hdl.handle.net/10356/175672
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this project report, I explore the integration of deep learning techniques with location-aware keyword queries for improved information retrieval in geospatial contexts. It addresses the challenge of efficiently managing high-dimensional geo-textual data and processing queries over large datasets, considering the computational expense of existing similarity metrics. The project implements novel methods for enhancing computation in this domain and adopts MGeo, a multi-modal geographic language model that incorporates geographic context as a modality. Additionally, a large-scale benchmark dataset, GeoTES, is used to facilitate further research in query-POI matching. Extensive experiments are conducted to evaluate the proposed methods against state-of-the-art pre-trained language models (PLMs), demonstrating significant performance improvements. Despite challenges such as the absence of user geolocation or query geographic context, MGeo exhibits the capability to model correlations between text, geographic context, and their combinations. The report concludes by suggesting future research directions, including the exploration of additional modalities such as POI images and the development of inventive geographic encoders to further enhance performance across geography-related tasks.