Machine learning assisted annotation leveraging large data foundation models
This research paper explores the potential of machine learning-assisted annotation methods in streamlining the data annotation process, enhancing annotation quality, and unlocking the full potential of annotated datasets at a production level. The author investigates the use of various advanced mach...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/175707 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | This research paper explores the potential of machine learning-assisted annotation methods in streamlining the data annotation process, enhancing annotation quality, and unlocking the full potential of annotated datasets at a production level. The author investigates the use of various advanced machine learning models, including the Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation (SEAM), Sobel Image Edge Detection, and the Segment Anything Model (SAM), to address challenges in large-scale data annotation. The study demonstrates that machine learning-assisted annotation methods represent a crucial solution to bridge the gaps in SAM, forming the basis for future ML-assisted annotation. The research highlights the significance of continued innovation in machine learning and computer vision to advance state-of-the-art data annotation practices and methodologies. |
---|