Mapping pareto fronts for efficient multi-objective materials discovery
With advancements in automation and high-throughput techniques, we can tackle more complex multi-objective materials discovery problems requiring a higher evaluation budget. Given that experimentation is greatly limited by evaluation budget, maximizing sample efficiency of optimization becomes cruci...
Saved in:
Main Authors: | Low, Andre Kai Yuan, Vissol-Gaudin, Eleonore, Lim, Yee-Fun, Hippalgaonkar, Kedar |
---|---|
其他作者: | School of Materials Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/175894 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Transfer learning of full molecular weight distributions via high-throughput computer-controlled polymerization
由: Tan, Jin Da, et al.
出版: (2023) -
Isolating Reactions at the Picoliter Scale: Parallel Control of Reaction Kinetics at the Liquid-Liquid Interface
由: Phan-Quang, Gia Chuong, et al.
出版: (2017) -
Classification of array CGH data using smoothed logistic regression model
由: Huang, J., et al.
出版: (2011) -
In Silico Methodologies for Selection and Prioritization of Compounds in Drug Discovery
由: YEO WEE KIANG
出版: (2013) -
Estimating the number of true discoveries in genome-wide association studies
由: Lee, W., et al.
出版: (2014)