Design and modeling of high-frequency printed circuit board-based inductive type wireless power resonators

This paper introduces a novel printed-circuit-board (PCB) resonator for 13.56MHz wireless power transfer (WPT) applications, offering a significant advancement by eliminating the need for additional discrete capacitors, thus facilitating high-frequency energy transmission with high Q values. An appr...

Full description

Saved in:
Bibliographic Details
Main Author: Shang, Shuye
Other Authors: Yun Yang
Format: Thesis-Master by Coursework
Language:English
Published: Nanyang Technological University 2024
Subjects:
Online Access:https://hdl.handle.net/10356/175950
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This paper introduces a novel printed-circuit-board (PCB) resonator for 13.56MHz wireless power transfer (WPT) applications, offering a significant advancement by eliminating the need for additional discrete capacitors, thus facilitating high-frequency energy transmission with high Q values. An appropriate equivalent circuit model is developed to optimize the PCB-based coil, with a comparative experimental study highlighting its performance against traditional circular planar helical coils. By adopting square polygonal configurations, the study refines the equivalent model with accuracy, supported by simulation and experimental validation. Addressing the design challenges of self-resonant PCB resonators in high-frequency WPT systems, particularly achieving targeted self-resonant frequencies (SRF) and high quality factors (Q) amid complex electromagnetic interactions, a reference-point-directed optimization approach utilizing unsupervised feature embedding is proposed. This method significantly enhances the Q factor by 122.6% over manual designs and achieves precise SRFs with reduced reliance on extensive data and computational resources, as demonstrated through design cases and hardware experiments. This streamlined approach marks a progress in the efficiency and design methodology of PCB resonators for WPT applications.