Experimental investigation on the strength and stiffness of 3D printed stainless steel S/S 316L parts

Additive manufacturing (AM) is a novel technique of producing complex near net-shape components, which may not be possible with conventional manufacturing techniques. However, due to the repetitive melting and rapid solidification involved in the manufacturing process, it may cause the specimen to e...

Full description

Saved in:
Bibliographic Details
Main Author: Ang, Pei Chang
Other Authors: Seah Leong Keey
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2024
Subjects:
Online Access:https://hdl.handle.net/10356/176225
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Additive manufacturing (AM) is a novel technique of producing complex near net-shape components, which may not be possible with conventional manufacturing techniques. However, due to the repetitive melting and rapid solidification involved in the manufacturing process, it may cause the specimen to exhibit anisotropic behaviour. This study aims to experimentally investigate the presence of anisotropic behaviour by evaluating the strength and stiffness of AM specimens and comparing it against conventionally manufactured specimens by conducting tensile, high cycle fatigue and Vickers hardness tests. In this study, Selective Laser Melting process was used to fabricate a total of 16 specimens in the XY and YX orientation without any post processing. Specimen fabrication and tests were conducted in accordance with American Society for Testing Material standard. From the tensile and hardness tests conducted, no anisotropic behaviour was observed between the orientations. While XY orientation have slightly better fatigue performance than YX orientation, it can be assumed to be negligible as both orientations exhibited endurance strength at the same stress amplitude.