Experimental investigation on the strength and stiffness of 3D printed stainless steel S/S 316L parts

Additive manufacturing (AM) is a novel technique of producing complex near net-shape components, which may not be possible with conventional manufacturing techniques. However, due to the repetitive melting and rapid solidification involved in the manufacturing process, it may cause the specimen to e...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Ang, Pei Chang
مؤلفون آخرون: Seah Leong Keey
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/176225
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Additive manufacturing (AM) is a novel technique of producing complex near net-shape components, which may not be possible with conventional manufacturing techniques. However, due to the repetitive melting and rapid solidification involved in the manufacturing process, it may cause the specimen to exhibit anisotropic behaviour. This study aims to experimentally investigate the presence of anisotropic behaviour by evaluating the strength and stiffness of AM specimens and comparing it against conventionally manufactured specimens by conducting tensile, high cycle fatigue and Vickers hardness tests. In this study, Selective Laser Melting process was used to fabricate a total of 16 specimens in the XY and YX orientation without any post processing. Specimen fabrication and tests were conducted in accordance with American Society for Testing Material standard. From the tensile and hardness tests conducted, no anisotropic behaviour was observed between the orientations. While XY orientation have slightly better fatigue performance than YX orientation, it can be assumed to be negligible as both orientations exhibited endurance strength at the same stress amplitude.