Effectiveness of various machine learning methods in stock price prediction

Stock investing has always been a risky endeavor and returns are never guaranteed. The way the stock price fluctuates is very hard to predict, as it can be affected by a lot of external factors and does not depend solely on the historical data of the stock. However, with the rapid improvement of mac...

全面介紹

Saved in:
書目詳細資料
主要作者: Choo, Yong Fen
其他作者: Wong Jia Yiing, Patricia
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2024
主題:
在線閱讀:https://hdl.handle.net/10356/176751
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Stock investing has always been a risky endeavor and returns are never guaranteed. The way the stock price fluctuates is very hard to predict, as it can be affected by a lot of external factors and does not depend solely on the historical data of the stock. However, with the rapid improvement of machine learning models, these models can identify the patterns and predict stock prices with a high degree of accuracy. This report is going to test and evaluate three of these machine learning models, Particle Swarm Optimization Long Short-Term Memory, Particle Swarm Optimization Gated Recurrent Unit and Transformer, and find out which model performs the best. Using evaluation metrics such as Mean Square Error, Root Mean Square Error, Mean Absolute Error, Mean Absolute Percentage Error and R squared. This report then tests the models on larger datasets finding out how well the models perform on them. Followed by adding a technical indicator in the form of Bollinger Bands and investigated the difference in performance.