3D printing of hydrophilic MOF-derived composites for high-yield solar-driven desalination

In recent years, solar steam generators (SSGs) have emerged as efficient and sustainable desalination devices, harnessing renewable solar energy to facilitate water evaporation, which could be a promising solution for the Earth’s decline in freshwater sources. Although SSGs are attractive, it is lim...

Full description

Saved in:
Bibliographic Details
Main Author: Kuah, Quan Chao
Other Authors: Zhou Kun
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2024
Subjects:
Online Access:https://hdl.handle.net/10356/177062
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In recent years, solar steam generators (SSGs) have emerged as efficient and sustainable desalination devices, harnessing renewable solar energy to facilitate water evaporation, which could be a promising solution for the Earth’s decline in freshwater sources. Although SSGs are attractive, it is limited by the inferior efficiency due to low light absorptivity, significant heat losses, and inefficient water transportation. Herein, a composite ink consists of MOF-derived porous C@Fe3O4 as fillers and a UV-curable 80A as the matrix was processed with Digital Light Processing (DLP) into various structures. The additional C@Fe3O4 remarkably enhance the sunlight absorption, while appropriate structure design proved to be effective in adjusting surface hydrophilicity, thereby facilitating the water transportation. The evaporation test demonstrated a notable enhancement in water evaporation rate by introducing the printed SSGs specimens. Overall, this pioneering investigation holds promise for improving SSG performance in the future, offering valuable strategies to address the challenges faced by current desalination technologies.