Engineering Fourier planes for analog image processing

This report delves into the realm of optical information processing, focusing on the implementation of edge detection within a Fourier domain-based 4f optical system. Utilising MATLAB and its Image Processing Toolbox, the project aims to design and optimise a system for real-time image processing. B...

全面介紹

Saved in:
書目詳細資料
主要作者: Muhammad 'Aqil Bin Rosdi
其他作者: Guangwei Hu
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2024
主題:
在線閱讀:https://hdl.handle.net/10356/177234
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This report delves into the realm of optical information processing, focusing on the implementation of edge detection within a Fourier domain-based 4f optical system. Utilising MATLAB and its Image Processing Toolbox, the project aims to design and optimise a system for real-time image processing. By initialising fundamental physical constants and system parameters, and employing Sobel operators within the Fourier domain, the study demonstrates effective edge detection of various input patterns, including structured geometric shapes and arbitrary images. The results underscore the potential of combining optical and computational techniques to achieve efficient and accurate edge detection. The project's success is evidenced by the clear delineation of edges in test patterns and complex images, highlighting the Sobel operator's robustness across different orientations and complexities. Furthermore, the exploration of MATLAB-based algorithms showcases advancements in edge detection methodologies, contributing to fields such as medical imaging, robotics, and quality control. This comprehensive study not only addresses a critical research gap but also lays the groundwork for future innovations in optical information processing.