Direct energy deposition (DED) process parameters optimization via experiments (C)

Direct Energy Deposition (DED) is a transformative method in Additive Manufacturing that allows for the precise fabrication of complex metal structures. Originating as a tool for repairing and modifying components, DED technology has evolved to play a pivotal role in a variety of industries, than...

Full description

Saved in:
Bibliographic Details
Main Author: Mohamed Zaki Bin Mohamed Abdul Kadir
Other Authors: Li Hua
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2024
Subjects:
DED
Online Access:https://hdl.handle.net/10356/177406
https://hdl.handle.net/10356/167562
https://doi.org/10.1016/j.apmate.2022.100054
https://doi.org/10.1080/17452759.2015.1111519.
https://doi.org/10.33889/ijmems.2022.7.1.007
https://doi.org/10.1016/j.matpr.2023.03.333
https://doi.org/10.1007/s40684-020-00302- 7
https://doi.org/10.1016/b978-0-08-102663-2.00002-2
https://doi.org/10.3390/coatings9070418
https://doi.org/10.20517/jmi.2022.18
https://doi.org/10.1016/j.jallcom.2019.02.121
https://doi.org/10.1016/j.optlastec.2018.11.054
https://doi.org/10.3390/ma13112666
https://doi.org/10.1016/j.optlastec.2017.10.015
https://doi.org/10.1016/j.optlaseng.2017.07.008
https://doi.org/10.1016/j.ijleo.2016.01.070
https://doi.org/10.1016/j.optlastec.2021.107162
https://doi.org/10.1016/j.matdes.2020.109342
https://doi.org/10.1016/j.jmrt.2022.02.042
https://doi.org/10.1007/s11665-021-05762-9
https://doi.org/10.1016/j.procir.2021.10.018
https://doi.org/10.1016/j.msea.2021.142004
https://doi.org/10.1007/s00170-022-09210-3
https://doi.org/10.1007/s00170- 020-06113-z
https://doi.org/10.1016/j.optlastec.2021.107680
https://doi.org/10.3390/app10093310
https://doi.org/10.3390/ma17040889.
https://doi.org/10.1533/9781845699819.6.461
https://doi.org/10.1007/s00170-022-09644-9
https://doi.org/10.1007/s00170-022-09210-3
https://doi.org/10.1007/s10845-022- 02029-5
https://doi.org/10.1007/s00170-023-10966-5
https://doi.org/10.3390/app12105027.
https://doi.org/10.1038/s41598-021-03622-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-177406
record_format dspace
spelling sg-ntu-dr.10356-1774062024-06-01T16:51:07Z Direct energy deposition (DED) process parameters optimization via experiments (C) Mohamed Zaki Bin Mohamed Abdul Kadir Li Hua School of Mechanical and Aerospace Engineering LiHua@ntu.edu.sg Engineering DED Direct Energy Deposition (DED) is a transformative method in Additive Manufacturing that allows for the precise fabrication of complex metal structures. Originating as a tool for repairing and modifying components, DED technology has evolved to play a pivotal role in a variety of industries, thanks to its ability to create intricate geometries and functional gradient materials. Due to this, there exist a problem in optimizing the parameters to get the right specifications. The primary goal of this study is to systematically investigate how various process parameters influence the properties of the manufactured samples. This involves a thorough experimental analysis to determine the effect of these variables on the deposition process. Finally, the project aims to establish a recommended range of parameters for singletrack deposition in DED, offering a guideline for optimal printing conditions. This conclusion is drawn from the extensive analysis of the experimental results. The report concludes by highlighting the significance of these findings for advancing the capabilities and understanding of DED, proposing valuable insights for future research. Bachelor's degree 2024-05-28T04:49:01Z 2024-05-28T04:49:01Z 2024 Final Year Project (FYP) Mohamed Zaki Bin Mohamed Abdul Kadir (2024). Direct energy deposition (DED) process parameters optimization via experiments (C). Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/177406 https://hdl.handle.net/10356/177406 en B126 https://hdl.handle.net/10356/167562 https://doi.org/10.1016/j.apmate.2022.100054 https://doi.org/10.1080/17452759.2015.1111519. https://doi.org/10.33889/ijmems.2022.7.1.007 https://doi.org/10.1016/j.matpr.2023.03.333 https://doi.org/10.1007/s40684-020-00302- 7 https://doi.org/10.1016/b978-0-08-102663-2.00002-2 https://doi.org/10.3390/coatings9070418 https://doi.org/10.20517/jmi.2022.18 https://doi.org/10.1016/j.jallcom.2019.02.121 https://doi.org/10.1016/j.optlastec.2018.11.054 https://doi.org/10.3390/ma13112666 https://doi.org/10.1016/j.optlastec.2017.10.015 https://doi.org/10.1016/j.optlaseng.2017.07.008 https://doi.org/10.1016/j.ijleo.2016.01.070 https://doi.org/10.1016/j.optlastec.2021.107162 https://doi.org/10.1016/j.matdes.2020.109342 https://doi.org/10.1016/j.jmrt.2022.02.042 https://doi.org/10.1007/s11665-021-05762-9 https://doi.org/10.1016/j.procir.2021.10.018 https://doi.org/10.1016/j.msea.2021.142004 https://doi.org/10.1007/s00170-022-09210-3 https://doi.org/10.1007/s00170- 020-06113-z https://doi.org/10.1016/j.optlastec.2021.107680 https://doi.org/10.3390/app10093310 https://doi.org/10.3390/ma17040889. https://doi.org/10.1533/9781845699819.6.461 https://doi.org/10.1007/s00170-022-09644-9 https://doi.org/10.1007/s00170-022-09210-3 https://doi.org/10.1007/s10845-022- 02029-5 https://doi.org/10.1007/s00170-023-10966-5 https://doi.org/10.3390/app12105027. https://doi.org/10.1038/s41598-021-03622-z application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering
DED
spellingShingle Engineering
DED
Mohamed Zaki Bin Mohamed Abdul Kadir
Direct energy deposition (DED) process parameters optimization via experiments (C)
description Direct Energy Deposition (DED) is a transformative method in Additive Manufacturing that allows for the precise fabrication of complex metal structures. Originating as a tool for repairing and modifying components, DED technology has evolved to play a pivotal role in a variety of industries, thanks to its ability to create intricate geometries and functional gradient materials. Due to this, there exist a problem in optimizing the parameters to get the right specifications. The primary goal of this study is to systematically investigate how various process parameters influence the properties of the manufactured samples. This involves a thorough experimental analysis to determine the effect of these variables on the deposition process. Finally, the project aims to establish a recommended range of parameters for singletrack deposition in DED, offering a guideline for optimal printing conditions. This conclusion is drawn from the extensive analysis of the experimental results. The report concludes by highlighting the significance of these findings for advancing the capabilities and understanding of DED, proposing valuable insights for future research.
author2 Li Hua
author_facet Li Hua
Mohamed Zaki Bin Mohamed Abdul Kadir
format Final Year Project
author Mohamed Zaki Bin Mohamed Abdul Kadir
author_sort Mohamed Zaki Bin Mohamed Abdul Kadir
title Direct energy deposition (DED) process parameters optimization via experiments (C)
title_short Direct energy deposition (DED) process parameters optimization via experiments (C)
title_full Direct energy deposition (DED) process parameters optimization via experiments (C)
title_fullStr Direct energy deposition (DED) process parameters optimization via experiments (C)
title_full_unstemmed Direct energy deposition (DED) process parameters optimization via experiments (C)
title_sort direct energy deposition (ded) process parameters optimization via experiments (c)
publisher Nanyang Technological University
publishDate 2024
url https://hdl.handle.net/10356/177406
https://hdl.handle.net/10356/167562
https://doi.org/10.1016/j.apmate.2022.100054
https://doi.org/10.1080/17452759.2015.1111519.
https://doi.org/10.33889/ijmems.2022.7.1.007
https://doi.org/10.1016/j.matpr.2023.03.333
https://doi.org/10.1007/s40684-020-00302- 7
https://doi.org/10.1016/b978-0-08-102663-2.00002-2
https://doi.org/10.3390/coatings9070418
https://doi.org/10.20517/jmi.2022.18
https://doi.org/10.1016/j.jallcom.2019.02.121
https://doi.org/10.1016/j.optlastec.2018.11.054
https://doi.org/10.3390/ma13112666
https://doi.org/10.1016/j.optlastec.2017.10.015
https://doi.org/10.1016/j.optlaseng.2017.07.008
https://doi.org/10.1016/j.ijleo.2016.01.070
https://doi.org/10.1016/j.optlastec.2021.107162
https://doi.org/10.1016/j.matdes.2020.109342
https://doi.org/10.1016/j.jmrt.2022.02.042
https://doi.org/10.1007/s11665-021-05762-9
https://doi.org/10.1016/j.procir.2021.10.018
https://doi.org/10.1016/j.msea.2021.142004
https://doi.org/10.1007/s00170-022-09210-3
https://doi.org/10.1007/s00170- 020-06113-z
https://doi.org/10.1016/j.optlastec.2021.107680
https://doi.org/10.3390/app10093310
https://doi.org/10.3390/ma17040889.
https://doi.org/10.1533/9781845699819.6.461
https://doi.org/10.1007/s00170-022-09644-9
https://doi.org/10.1007/s00170-022-09210-3
https://doi.org/10.1007/s10845-022- 02029-5
https://doi.org/10.1007/s00170-023-10966-5
https://doi.org/10.3390/app12105027.
https://doi.org/10.1038/s41598-021-03622-z
_version_ 1800916287603343360