Ultra low-power macro-blocks for biomedical applications

An area-power efficient full-adder is designed in the form of a soft macro and serving as a basic module for the multiplier-less Finite Impulse Response (FIR) filter architecture implementation. A comprehensive analysis on the existing 1-bit full-adder designs are carried out. The best five full-...

全面介紹

Saved in:
書目詳細資料
主要作者: Chew, Eng Sue.
其他作者: Goh Wang Ling
格式: Final Year Project
語言:English
出版: 2009
主題:
在線閱讀:http://hdl.handle.net/10356/17760
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:An area-power efficient full-adder is designed in the form of a soft macro and serving as a basic module for the multiplier-less Finite Impulse Response (FIR) filter architecture implementation. A comprehensive analysis on the existing 1-bit full-adder designs are carried out. The best five full-adder ciruits are chosen for evaluation and a full-adder circuit that dissipates low-power consumption with small silicon area is proposed. In addition, the proposed full-adder is able to operate at a low supply voltage of 1.2V and thus it is suitable for battery-powered portable biomedical applications.Performances of the circuits are compared using HSPICE simulations in 0.18um CMOS process technology with 100 random input vectors. The proposed full-adder features least power consumption, lowest power delay product and smallest area among the recently reported designs at the low supply voltage of 1.2V. In addition, the advantage of the proposed low-voltage low-power full-adder is explored by integrating the full-adder into the multiplier-less FIR filter, whih is a digital filter commonly used in the multirate filter bank for biomedical applications.