Multiple distresses detection for asphalt pavement using improved You Only Look Once algorithm based on convolutional neural network
Leveraging the YOLOv7 object detection framework, this study introduces YOLOv7-CSP, a refined algorithm tailored for identifying asphalt pavement distress with enhanced precision. Utilizing advanced image processing for dataset preprocessing, including data augmentation and denoising, YOLOv7-CSP int...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/178281 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Leveraging the YOLOv7 object detection framework, this study introduces YOLOv7-CSP, a refined algorithm tailored for identifying asphalt pavement distress with enhanced precision. Utilizing advanced image processing for dataset preprocessing, including data augmentation and denoising, YOLOv7-CSP integrates the CSPNeXt structure and CA attention mechanism for improved detection accuracy and efficiency. The algorithm optimizes anchor box selection through Kmeans clustering and employs a secondary labeling method to enhance learning efficiency and dataset quality. Comparative tests reveal YOLOv7-CSP's superior performance, with significant improvements in mAP, F1 score, GFLOPS, and FPS metrics, demonstrating its effectiveness in detecting various pavement distresses. This innovative approach marks a significant advancement in automatic pavement distress recognition, offering a robust solution for highway maintenance decision-making. |
---|