Heterogeneous attenuation of sound waves in three-dimensional amorphous solids
Sound waves are attenuated as they propagate in amorphous materials. We investigate the mechanism driving sound attenuation in the Rayleigh scattering regime by resolving the dynamics of an excited phonon in time and space via numerical simulations. We find sound attenuation is spatiotemporally hete...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/178503 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Sound waves are attenuated as they propagate in amorphous materials. We investigate the mechanism driving sound attenuation in the Rayleigh scattering regime by resolving the dynamics of an excited phonon in time and space via numerical simulations. We find sound attenuation is spatiotemporally heterogeneous. It starts in localized regions, which identify soft regions within the material and correlate with low-frequency vibrational modes. As time progresses, the regions where sound is primarily attenuated invade the system via an apparent diffusive process. |
---|