MAE-VQA: an efficient and accurate end-to-end video quality assessment method for user generated content videos
In the digital age, the proliferation of user-generated content (UGC) videos presents unique challenges in maintaining video quality across diverse platforms. In this project, we propose Masked Auto-Encoder model for no-reference video quality assessment (NR-VQA) problem. To our best knowledge, we a...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/178566 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |