MAE-VQA: an efficient and accurate end-to-end video quality assessment method for user generated content videos
In the digital age, the proliferation of user-generated content (UGC) videos presents unique challenges in maintaining video quality across diverse platforms. In this project, we propose Masked Auto-Encoder model for no-reference video quality assessment (NR-VQA) problem. To our best knowledge, we a...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/178566 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |