Enhanced thermoelectric performance of MnTe by decoupling of electrical and thermal transports

Lead-free polycrystalline manganese telluride holds great potential in the development of waste heat recovery due to its fascinating physical properties. However, the poor thermoelectric (TE) performance in the p-type MnTe alloys always results from their inferior carrier concentration, leading to l...

Full description

Saved in:
Bibliographic Details
Main Authors: Basit, Abdul, Xin, Jiwu, Luo, Yubo, Dai, Ji-Yan Y., Yang, Junyou
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/10356/178567
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Lead-free polycrystalline manganese telluride holds great potential in the development of waste heat recovery due to its fascinating physical properties. However, the poor thermoelectric (TE) performance in the p-type MnTe alloys always results from their inferior carrier concentration, leading to low power factor and high thermal conductivity which restrict the overall thermoelectric performance. In this work, the problem is solved by decoupling its electrical and thermal transports through the hole donor Ge-deficiency in MnTe + x mol.% GeTe (0 ≤ x ≤ 4) compounds. Intrinsically, extra GeTe in MnTe + x mol.% GeTe compound offers free charge carriers due to a narrow bandgap comparatively, realizing not only a full assessment of stimulated electrical performance but also an enhanced power factor. Moreover, benefiting from the nano-precipitates and tweed microstructures, the lattice thermal conductivity effectively reduces due to the intensive phonon scattering accordingly. Ultimately, a maximum ZT of ≈1.2 at 873 K in the 3 mol.% GeTe doped MnTe sample is realized.