Generative AI: a systematic review using topic modelling techniques

Generative artificial intelligence (GAI) is a rapidly growing field with a wide range of applications. In this paper, a thorough examination of the research landscape in GAI is presented, encompassing a comprehensive overview of the prevailing themes and topics within the field. The study analyzes a...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Gupta, Priyanka, Ding, Bosheng, Guan, Chong, Ding, Ding
مؤلفون آخرون: College of Computing and Data Science
التنسيق: مقال
اللغة:English
منشور في: 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/178610
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Generative artificial intelligence (GAI) is a rapidly growing field with a wide range of applications. In this paper, a thorough examination of the research landscape in GAI is presented, encompassing a comprehensive overview of the prevailing themes and topics within the field. The study analyzes a corpus of 1319 records from Scopus spanning from 1985 to 2023 and comprises journal articles, books, book chapters, conference papers, and selected working papers. The analysis revealed seven distinct clusters of topics in GAI research: image processing and content analysis, content generation, emerging use cases, engineering, cognitive inference and planning, data privacy and security, and Generative Pre-Trained Transformer (GPT) academic applications. The paper discusses the findings of the analysis and identifies some of the key challenges and opportunities in GAI research. The paper concludes by calling for further research in GAI, particularly in the areas of explainability, robustness, cross-modal and multi-modal generation, and interactive co-creation. The paper also highlights the importance of addressing the challenges of data privacy and security in GAI and responsible use of GAI.