Annihilation mechanisms for interacting skyrmions in magnetic nanowire

Magnetic skyrmions are considered potential candidates for spintronics-based memory and logic devices. For achieving high-density and high-speed devices, it is essential to study their interactions. In this paper, the interaction, dynamics and annihilation mechanisms of Néel skyrmions in nanowire co...

全面介紹

Saved in:
書目詳細資料
Main Authors: Al Saidi, W., Bhatti, Sabpreet, Piramanayagam, S. N., Sbiaa, R.
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/178671
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Magnetic skyrmions are considered potential candidates for spintronics-based memory and logic devices. For achieving high-density and high-speed devices, it is essential to study their interactions. In this paper, the interaction, dynamics and annihilation mechanisms of Néel skyrmions in nanowire confinement under the influence of spin-transfer torque (STT) and edge forces have been studied. Initially isolated, two Néel skyrmions are brought into proximity, leading to distinct interaction scenarios characterized by varying current densities. We explore the impact of these interactions on skyrmion trajectories, size evolution, and annihilation phenomena. Our findings reveal the interplay of skyrmion-skyrmion repulsive forces, edge effects, and the influence of STT, shedding light on the rich dynamics of these topological magnetic textures. Furthermore, we unveil the distinct annihilation mechanisms of the leading and trailing skyrmions under different forces, providing valuable insights into the fundamental physics of skyrmion behavior in confined geometries.