Design of a high resolution SLD-OCT and its application

OCT is an interferometric technique, relying on interference between a split and later recombined broadband optical field. The axial resolution of an OCT system is determined by the temporal coherence of the light source: light sources with shorter coherence length provide better resolution. In t...

全面介紹

Saved in:
書目詳細資料
主要作者: Phua, Soo Fan.
其他作者: Ng Beng Koon
格式: Final Year Project
語言:English
出版: 2009
主題:
在線閱讀:http://hdl.handle.net/10356/17869
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:OCT is an interferometric technique, relying on interference between a split and later recombined broadband optical field. The axial resolution of an OCT system is determined by the temporal coherence of the light source: light sources with shorter coherence length provide better resolution. In this project, application of OCT on plant diagnosis is investigated based on the sysmbiosis relationship between orchid plants and the mychorrhizal fungi in the orchid roots. In our studies, we analysed the causes of difference in the OCT images between a fresh root and an ethanol-soaked root. However, further studies are needed to produce a prominent method to investigate the plant health using OCT system. Besides that, a Time-Domain OCT (TD-OCT) is built using a short-wavelength LED as its light source. The OCT with low wavelength light source gives resolution of about 6.5μm. Due to its insufficient output power, a Xenon lamp OCT is built and a resolution of about 0.6μm is achieved. Lastly, MATLAB simulation is done to determine an optimum wavelength separation between two SLD or LED sources when combining these sources to achieve wider bandwidth sources. The simulation takes into account both the resolution of the combined source and the sidelobes effects incurred by its non-Gaussian shape.