Randomized methods for computing optimal transport without regularization and their convergence analysis
The optimal transport (OT) problem can be reduced to a linear programming (LP) problem through discretization. In this paper, we introduced the random block coordinate descent (RBCD) methods to directly solve this LP problem. Our approach involves restricting the potentially large-scale optimization...
Saved in:
Main Authors: | Xie, Yue, Wang, Zhongjian, Zhang, Zhiwen |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/178997 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Provably convergent algorithm for free-support Wasserstein barycenter of continuous non-parametric measures
由: Chen, Zeyi
出版: (2024) -
OPTIMAL TRANSPORT: NUMERICAL OPTIMIZATION AND APPLICATIONS
由: CHU THI MAI HONG
出版: (2023) -
On the stability of the martingale optimal transport problem: a set-valued map approach
由: Neufeld, Ariel, et al.
出版: (2022) -
Portfolio Optimization: Some Aspects of Modeling and Computing
由: Nguyen, Thanh Hai, et al.
出版: (2018) -
Feasibility and Infeasibility in Optimization: Algorithms and Computational Methods
由: Chinneck, John W.
出版: (2017)