Dynamically-biased fixed-point LSTM for time series processing in AIoT edge device
In this paper, a Dynamically-Biased Long Short-Term Memory (DB-LSTM) neural network architecture is proposed for artificial intelligence internet of things (AIoT) applications. Different from the conventional LSTM which uses static bias, DB-LSTM adjusts the cell bias dynamically based on the previou...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/179102 https://ieeexplore.ieee.org/abstract/document/9458508 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |