Dynamically-biased fixed-point LSTM for time series processing in AIoT edge device
In this paper, a Dynamically-Biased Long Short-Term Memory (DB-LSTM) neural network architecture is proposed for artificial intelligence internet of things (AIoT) applications. Different from the conventional LSTM which uses static bias, DB-LSTM adjusts the cell bias dynamically based on the previou...
محفوظ في:
المؤلفون الرئيسيون: | Hu, Jinhai, Goh, Wang Ling, Gao, Yuan |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/179102 https://ieeexplore.ieee.org/abstract/document/9458508 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Classification of ECG anomaly with dynamically-biased LSTM for continuous cardiac monitoring
بواسطة: Hu, Jinhai, وآخرون
منشور في: (2024) -
Time Series Forecasting of E- Databases Subscription Mahidol University Library with Exponential Smoothing, LSTM, and ARIMA Models
بواسطة: Vanaphol Chamsukhee
منشور في: (2021) -
A hybrid approach for high precision prediction of gas flows
بواسطة: Petkovic, Milena, وآخرون
منشور في: (2022) -
The fixed-point set and the convergence set of a continuous function
بواسطة: Sompong Chuysurichay
منشور في: (2008) -
The fixed-point set and the convergence set of a continuous function
بواسطة: Sompong Chuysurichay
منشور في: (2002)